
Use of CLIPS for Representation and Inference in a Clinical Event Monitor

Marvin C. Pankaskie and Michael M. Wagner
Center for Biomedical Informatics, University of Pittsburgh

We developed a clinical event monitor that is
currently deployed in an inpatient setting. We
selected CLIPS as the basis for its KB and inference
engine. This paper describes the considerations that
went into that decision, how we represented drug
and laboratory knowledge in CLIPSs, and how we
extended CLIPS to deal with temporal inferences We
also review the published literature about the use of
CLIPS in medicine.

INTRODUCTION

A key decision faced by developers of clinical event
monitors is the choice of representation and inference
subsystems [1]. This decision affects the ease of
knowledge acquisition, representation, and the range
of inferences that the system can make. In
developing a clinical event monitor at the University
of Pittsburgh Medical Center (UPMC), we initially
wrote rules using the C programming language
because issues of data access, embedding and
communication of alerts to physicians were
paramount. As we attempted to add rules to the
system, the use of a knowledge representation system
became necessary.

Knowledge representation (KR) systems are complex
software systems and many exist. Therefore, we did
not consider building one ourselves. Instead, we
considered general purpose KR services such as the
C Language Integrated Production System (CLIPS),
and special purpose KR systems such as Arden.

INFERENCE ENGINES USED IN CLINICAL
EVENT MONITORING SYSTEMS

Most of the inference engines (IE) employed in
clinical decision support are either specially designed
systems such as Arden or general purpose systems
such as CLIPS, and each has its own unique set of
characteristics. They are designed to carry out some
reasoning process, using sets of clinical criteria or
"rules" depending on the event that triggered the IE.
If the criteria are met, then the IE provides some
action (or choice of actions) to alert the provider that
a clinical event of interest has occurred and that some
action(s) should be taken. Notification can take any
number of forms, but email, paging, updating of a

clinical database, and quality assurance have been the
most common to date. Several examples of systems
currently in use will be summarized below.

The Arden Syntax for Medical Logic Modules is a
special purpose language for encoding medical
knowledge, developed in part at Columbia University
[2]. It consists of a Medical Logic Module (MLM),
which contains sufficient logic for a single medical
decision; MLMs are therefore independent of each
other. Functionally, an MLM consists of four major
components: an evoking event, logic, action, and data
mapping. Since all necessary knowledge is contained
within the MLM, there is no need for an external
knowledge base. While this feature can enhance
processing efficiency (only data needed by the logic
component is retrieved), knowledge cannot be shared
between MLMs (e.g., drug product and
pharmacological profile, data). The primary
advantages to using Arden are that it includes a well
developed concept of time, and thus temporal
inferences can be encoded more easily, and the rule
logic can be shared among users with only a minimal
amount of recoding. Arden Syntax has also been
incorporated into several commercial products such
as the Clinical Decision Support/CareVISION system
by HealthVISION Corporation [3] and the Clinical
Management System being developed by IBM.

Stanford has developed a special purpose software
system called EON as the inference component or
"problem solver" of their protocol-based oncology
care systems, PROTEGE II and T-HELPER. Using a
problem-solving approach, PROTEGE II allows a
developer to assemble new problem-solving methods
and models, using a library of reuseable methods and
mechanisms [4].

Since 1972, the Health Evaluation through Logical
Processing (HELPTM) system has been used at the
LDS Hospital for clinical decision support,
knowledge acquisition and database development,
application development, and systems integration. It
is largely constructed using the Tandem system
language (TAL), a high-level database query
language (PAL) the HELP frame language, and the
HELP compiler language (HCOM), the latter serving
to facilitate the development of computerized logic

1091-8280197/$5.00 © 1997 AMIA, Inc. 193

modules or sectors. HELPTM is now a trademarked
product of 3M Health Information Systems, and
versions of it are commercially available [5].

Brigham and Women's Hospital employs an
application suite written in MUMPS with a
knowledge base stored in a distributed MUMPS
database, using relevant patient information from the
Brigham Integrated Computing System (BICS). To
process asynchronous events, the BICS Event Engine
was developed to facilitate the development and
production use of clinical logic rules. A rule editor
provides a simple interface so that rules can be
authored by non-programmers. Although the Event
Engine's triggering, alerting, and action-item
functions are broader than those included in the
Arden Syntax, the logic of the Event Engine's rules
are compatible with those described by Arden [6].

The Regenstrief Medical Record System (RMRS)
uses an English-like computer language system
called CARE to specify the retrieval of patient
information according to criteria set by the user. It
can be used in surveillance mode to monitor events
and procedures, invoke a set of practice rules
(protocols), and transmit its inferences to the
physician concerning clinical conditions that might
require corrective action. It can also be used in query
mode to extract and analyze patient characteristics or
care patterns (e.g., the incidence of toxicity for a new
drug or usage trends for a particular diagnostic test).
The latter can be used for both retrospective analysis
or for incorporation into prospective studies [7].

GermWatcher, developed at Washington University's
School of Medicine, is an expert system designed to
support infection control specialists in detecting,
tracking, and investigating infections in hospitalized
patients. It employs a commercial relational database
to model the CDS's National Nosocomial Infection
Surveillance System culture-based definitions for
nosocomial infections plus the Germ Watcher
Engine, a modified implementation of the CLIPS
expert system shell. The concept of GermWatcher
was first described and implemented at the LDS
Hospital at the University of Utah, but was non-
portable and employed a self-developed database and
inference engine. The WU implementation added a
family of tools using readily available and public-
domain products, including the CLIPS inference
engine [8].

CLIPS is a forward chaining, multiparadigm, expert
system shell that provides support for rule-based,

object-oriented, and procedural programming. CLIPS
rules closely resemble those found in languages such
as ART, ART-IM, Eclipse, and Cognate, while its
programming language has features similar to
languages such as C, Ada, and Pascal, and is
syntactically very similar to LISP. CLIPS was
designed at NASA's Johnson Space Center, is written
in the C programming language, and is available in
the public domain [9]. It can be installed on a variety
of computers, and versions are available for the PC,
Mac, and UNIX operating systems. Key features of
CLIPS that made it attractive to us were that it
supports object-oriented programming, provides
structures for taxonomic inferences (e.g., to classify
a medication's pharmacological properties), supports
both embedding and arbitrary user extension through
the use of external functions, and supports the
construction of modules for more explicit execution
control and knowledge base partitioning. Its primary
drawback is the lack of temporal functions such as
those found in Arden (e.g., retrieving the last 5 serum
K levels, detecting a medication order placed within
24 hrs of an alert, testing the existence of a culture
report).

OVERVIEW OF THE CLINICAL EVENT
MONITORING SYSTEM (CLEM) AT UPMC

Out clinical event monitoring system (CLEM)
employs an orthodox architecture for an event
monitor [1]. It consists of an event detector, an
inference engine, knowledge bases, performance
monitors, coverage list database, and notification
subsystems. It runs under the Unix operating system
and obtains patient data from the existing central data
warehouse at UPMC (MARS). It employs CLIPS as
both the inference engine and knowledge base, which
are embedded in a structured "manager" program
written in the C programming language. Notification
is made via email or two-way pager, depending on
the urgency of the information. Additional
documentation related to the event (e.g., therapeutic
guidelines, literature reviews) can be sent to the
recipient on demand via email attachments, direct
printouts to nursing station printers, or as HTML
pages.

Examples of the conditions or events which CLEM
monitors include changing renal function in patients
receiving renally excreted medications, appropriate
use of drug level monitoring, drug_induced platelet
toxicity, life-threatening electrolyte abnormalities,
medications that interact with warfarin, IV to oral
administration route conversions, and optimal

194

medication management in geriatric patients. The
detection of these conditions poses the full-range of
difficulty for expert systems including temporal and
taxonomic inferences.

RESULTS AND OBSERVATIONS

1. Representation of Drug Knowledge

UPMC Pharmacy Services currently uses a
commercial system (Pharmakong) to enter and track
medication orders and to alert the pharmacist to such
potential events as drug allergies, drug order
duplication, and potential drug interactions prior to
the actual administration of the medication to the
patient. Pharmakon records are usually limited to
information about what formulary drug products are
dispensed to the units based on paper orders written
by the physician. rather than a medication
administration record (i.e., drug name, dose, route,
infusion rate). In addition, each formulary entry is
assigned one or more arbitrary keys (mnemonic) that
describe the strength, concentration, and dosage form
of the product, and are used for internal identification
and billing purposes. This key is similar to the
National Drug Code, but has been customized to
work with the Pharmakon system and is not readily
mappable to other common drug codes such as
National Drug Code (FDA), Generic Code Number
(FirstData Bank) or Generic Product Identifier
(Medispan).

In order for us to represent drug knowledge (e.g.,
default dosing schedules, side effects,
pharmacological class membership, drug
interactions), we developed a drug knowledge base,
written as a series of CLIPS deffact statements, that
includes fields for the generic drug name, mnemonic
codes that relate to that drug, side effects, dosing
information, pharmacologic and therapeutic class
information, and drug interaction lists. An example
of one entry for ciprofloxacin is given below:

(Drug

(mnemonic CPRF250 CPRF500 CPRF750)
(name Ciprofloxacin)
(excretion_route renal)
(therapeutic-class antibiotic)
(pharmacologic_class fluoroquinolone)
(side_effects delirium diarrhea seizures)
(clearance_dependant_doses

"0.25 0.50 Q12H BID"
"0.25 0.50 Q12H BID"

"0.25 0.50 Q12H Q24H BID QD")
(warfarin_interaction "Probably Potentiates"))

This declarative, frame-like representation has
several advantages. First, it allowed us to easily add
new attributes to existing entries (e.g., drug
interactions, therapeutic restrictions, warnings,
educational "pearls") without changing the rest of the
knowledge base. Second, we were able to add new
formulary drugs and new dosage forms (new
strengths, extemporaneous or custom preparations)
that are continually being added to the drug
formulary (- 5 per week).

2. Forward Chaining

A common inference in event monitoring is the
determination of class membership (e.g., gentamicin
is a member of the aminoglycoside class of
antibiotics, and the aminoglycosides as a class can
cause nephrotoxicity). Backward chaining is not
available in CLIPS. After writing many rules that had
a pseudo-backward chaining flavor, we realized that
forward chaining key drug properties was
advantageous. This allowed us to create for each
patient a description of his/her current medications
(drug name, dose, route and frequency of
administration) as well as various properties (side
effects, contraindications, drug interactions, dosing
schedules) of each of these current medications as a
single database record that could then be used by our
inference engine. By combining patient-specific
medication data with the drug knowledge described
above, our forward-chaining rule asserts a set of facts
as shown below for each medication the patient is on:

(patient_medication_data

(mnemonic CPRF500)
(name Ciprofloxacin)
(dosagejform Ciprofloxacin HCI 500 mg tablet)
(dose 500mg)
(route oral)
(frequency BID)
(excretion route renal)
(therapeutic_class antibiotic)
(pharmacologic class fluroquinolone)
(side effects delirium diarrhea seizures)
(clearance dependant_doses

"0.25 0.50 Q12H BID"
"0.25 0.50 Q12H BID"
"0.25 0.50 Q12H BID Q24H QD")

(warfarin_interaction "Probably Potentiates"))

195

3. Temporal Inferences

Another common type of inference is temporal
inference. CLIPS provides good list processing
primitives (e.g., nth) so if we loaded time sorted data
into CLIPS, we could obtain sublists (e.g., a
temporal representation of a patients medication
orders or a table or graph of the patient's laboratory
data sorted by date and time) with reasonable
efficiency. However, we were concerned that some
data that we would process would have numbers of
observations that exceeded CLIPS capacity.
Therefore, we chose to represent encoded data using
a combination of linked lists and temporal predicates
such as last, previous, first instance of event_after,
timeof; and existence of to retrieve only events of
interest. We also developed several storage databases
that allowed us to track event details and message
content back in time (and thus construct rules that
were "aware" of message content that had already
been sent) as well as to post messages for delivery at
some predetermined time in the future. The
development of these external functions required a
significant amount of time compared to the
construction of the drug knowledge base and the
embedding of CLIPS in our C language "manager".
However, coupled with the archival information
available from our electronic medical record system,
this design permitted us to create rules and alerts that
utilized all available data, both past and present, and
to more accurately predict possible events in the
future (e.g., adverse drug reactions)

4. Automatic Outcome Detection

To facilitate gathering information on whether the
recipient heeded or ignored the alert's advice, and
what actions were taken (if any), we constructed a set
of automated outcome detection (AOD) rules. When
a given alert is sent, information such as the
triggering event that lead to the alert, the time that the
alert was sent, and the recipient(s) of the alert is
stored in a database that can be loaded into CLIPS
working memory the next time that CLIPS initializes.
This information can then used to infer if any action
has been taken relative to the time/content of the
original alert (e.g., if a K supplement was ordered if
the serum K level was low or if a serum phenytoin
level was ordered if the patient had been on
phenytoin for more than 3 days), using a series of
rules that compare the patient's status before and
after the alert was sent. In this manner, we are able to
observe whether the recipient had, in fact, changed
his/her management of the patient.

Currently, the drug KB has 450 drug formulary
entries, each entered by hand using information from
the UPMC Drug Formulary, various literature
reviews, current practice guidelines, and electronic
drug information references (Micromedex,
Medispan, Clinical Pharmacology). This is
approximately 10% of the total UPMC Drug
Formulary listing. While CLIPS provides an
excellent environment for building a drug KB and
using it for taxonomic inferences, representing and
maintaining the entire drug formulary in this manner
would be difficult. Yet some linkage between
Pharmakon and our drug knowledge base must be
maintained to accurately identify the drug product
dispensed by Pharmacy Services. To resolve this
issue, we intend to obtain a commercial drug
database that would serve as the drug knowledge
base component of CLEM, and create a mapping of
the Pharmakon mnemonic key(s) to the appropriate
unique identifier key or NDC code in the commercial
database. This will provide greater portability,
improve database maintenance, and accommodate
changes to (or replacement of) the Pharmakon
database in the future.

We currently represent temporal elements (e.g.,
previous serum K level, last serum creatinine
concentration, a new order for vancomycin) through
the use of external C functions that pass values to
CLIPS. To extend the temporal reasoning ability of
CLEM, we are considering converting the rules built
in CLIPS into Medical Language Modules (MLMs)
using the Arden Syntax language, which has better
built-in date and time functions.

Representing practice guidelines or critical care
pathways as rules also poses some unique challenges.
Starren and Xie [10] compared three knowledge
representation formalisms (CLASSIC, PROLOG, and
CLIPS) used to encode the National Cholesterol
Education Program (NCEP) guidelines. They found
that CLIPS was the easiest system to conceptualize
states and rules and to specify patient attributes,
although it lacked built-in time and date functions.
The Computer Assisted Management Protocol
(CAMP) developed at Duke University applied
individualized feedback reminder techniques to
patients with diabetes mellitus and demonstrated
major improvement in guideline compliance [11].
We currently incorporate several practice guidelines
(e.g., antibiotic dosing in patients with renal
impairment, switching IV antibiotics to their oral

196

DISCUSSION

equivalents, optimal utilization of amphotericin B in
Candida sp. infections) into CLEM, and intend to
add others in the future.

CONCLUSIONS AND
FUTURE DIRECTIONS

We have developed a clinical event monitor (CLEM)
built around an existing electronic medical record
system (MARS), using a combination of an
embedded CLIPS-based inference engine and drug
knowledge base, a C language event detector and
notification manager, and an email-based messaging
service. CLEM is currently evaluating events such as
abnormal blood chemistries (e.g., hematocrit, serum
creatinine, electrolyte levels, INR), drug dosing in
patients with impaired renal function (e.g.,
antibiotics, narcotics, H2 blockers), drug use in
geriatric patients (e.g., excessive use of sedatives,
anticholinergic side effects), and medication
management initiatives (e.g., drug level monitoring,
IV to oral route conversion, warfarin interactions,
amphotericin therapy). Infonnation concerning
events of clinical importance or suggestions for
improving drug therapy outcomes are currently sent
to general medicine interns via email or two-way
pagers, and they responded favorably to them.
Changes in patient management are tracked using
automated outcome detection rules and manual chart
reviews.

Future refinements to CLEM will involve exporting
our CLIPS-based rule set to Arden Syntax (providing
we can retain the inference capabilities we now have
using CLIPS) to allow the development of better
temporal inferences, the purchase of a commercial
drug knowledge base that will be easier for us to
upgrade and maintain, and the development of a
mapping algorithm to link the current Pharmacy
Services medication ordering and tracking system
with the commercial drug database.

This work was supported by grants 5 T15 LM07059-
10 and 1 R29 LM06233-OIAI from the National
Library of Medicine.

REFERENCES

1. Hripcsak G, Clayton PD, Jenders RA, Cimino JJ,
Johnson SB. Design of a Clinical Event Monitor.
Computers and Biomedical Research 1996; 29(3):194-
221.

2. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB,
Clayton PD. Rationale for the Arden Syntax.
Computers and Biomedical Research 1994; 27(4):291 -
324.

3. Corman R, Sager J, Wu J, Wang S, Diane D, McEwan
D. Arden-Based Clinical Decision Support in an Object
Oriented World. Proc AMIA Annual Fall Symposium
1996; 873.

4. Musen MA, Gennari JH, Eriksson H, Tu SW, Puerta
AR. PROTEGE-II: Computer Support for Development
of Intelligent Systems from Libraries of Components.
Proc ofMEDINFO 95, The Eighth World Congress on
Medical Informatics 1995; 766-770.

5. Kuperman GJ, Gardner RM, Pryor TA, HELP: A
Dynamic Hospital Information System. Springer-
Verlag 1991.

6. Kuperman GJ, Teich JM, Bates DW, McLatchey J,
Hoff TG, Representing Hospital Events as Complex
Conditionals. JAMIA 1995; 2:137-141.

7. McDonald CJ, Tierney W, Martin DK, Overhage JM,
The Regenstrief Medical Record System: Twenty Years
of Experience in Hospitals, Clinics, and Neighborhood
Health Centers. MD Comput 1992; 9:206-217.

8. Kahn MG, Steib SA, Fraser VJ, Dunagan WC. An
Expert System For Culture-Based Infection-Control
Surveillance. Proc 17th Annual Symposium on
Computer Applications in Medical Care 1993: 171-5.

9. The Information Technology Office, Johnson Space
Center, National Aeronautics and Space Administration
(NASA), CLIPS: The C Language Integrated
Production System. Http://www.jsc.nasa.gov/-clips/
CLIPS.html.

10. Starren J, Xie G. Comparison of Three Knowledge
Representation Formalisms for Encoding the NCEP
Cholesterol Guidelines. Proc 18th Symp Comput Appl
Med Care 1994; 18:792-796.

11. Lobach DF, Hammond WE. Development and
Evaluation of a Computer-Assisted Management
Protocol (CAMP): Improved Compliance with Care
Guidelines for Diabetes Mellitus. Proc 18th Symp
Comput AppI Med Care 1994; 18:787-791.

197

